Dependent Samples:
Matched Pairs & TI

Tips & Notations:
1. Key Words: Before & After.

2. Preparation:
 (a) Enter data from before group in \(L_1 \).
 (b) Enter matched data from after group in \(L_2 \).
 (c) Highlight \(L_3 \) and then do \(L_1 - L_2 \) followed by ENTER.

3. Mean of the differenced data: \(\bar{d} \)

4. Standard Deviation of the differenced data: \(s_d \)

5. Population mean difference of the matched-pairs data: \(\mu_d \)

Basic Statistics Computations For \(\bar{d} \) & \(s_d \):

1. How to Find \(\bar{d} \): \[\text{STAT} > \text{CALC} > 1\text{-Var STATS} > L_3 \text{ ENTER, } \bar{d} = \bar{x} \]
2. How to Find \(s_d \): \[\text{STAT} > \text{CALC} > 1\text{-Var STATS} > L_3 \text{ ENTER, } s_d = s_x \]

Confidence Interval For \(\mu_d \):

1. How to Write the Final Answer: \[\mu_d < \]
2. Confidence Interval Using TI: \(\text{TInterval} > \text{Inpt: Data, List: } L_3 \text{, and Freq:1.} \)

Hypothesis Testing For \(\mu_d \):

\[H_0 : \mu_d = 0 \]
\[H_1 : \begin{cases} \mu_d \neq 0 & \text{Two - Tail Test} \\ \mu_d > 0 & \text{Right - Tail Test} \\ \mu_d < 0 & \text{Left - Tail Test} \end{cases} \]

1. Finding Critical Values Using TI: \(\text{PRGM} > \text{TVAL} \text{ ENTER (Twice)} \)

2. Degrees Of Freedom: \(df = n - 1 \)

3. Finding C.T.S. & P-Value Using TI: \(\text{STAT} > \text{TESTS} > \text{TTest} \)
Guided Example:

10 different athletes were randomly selected to join a 3-month diet program to gain weight. The results are given in the following table.

<table>
<thead>
<tr>
<th>Before Diet:</th>
<th>185 170 190 200 180 195 175 200 215 220</th>
</tr>
</thead>
<tbody>
<tr>
<td>After Diet:</td>
<td>200 180 190 195 195 180 200 225 220 215</td>
</tr>
</tbody>
</table>

After entering these data in L_1 and L_2, followed by the difference in L_3, we should have the following:

Before Diet $\rightarrow L_1$	185 170 190 200 180 195 175 200 215 220
After Diet $\rightarrow L_2$	200 180 190 195 195 180 200 225 220 215
Difference $\rightarrow L_3$	$-15 -10 0 5 -15 15 -25 -25 -5 5$

1. Using L_3, find \bar{d}. Round to the nearest whole number. Answer: $\bar{d} = -7$

2. Using L_3, find S_d. Round to the nearest whole number. Answer: $S_d = 13$

3. Using these results, find the 98% confidence interval for the mean of all differences μ_d. Round to the one decimal place value.
 Answer: $-18.6 < \mu_d < 4.6$

4. test the claim at $\alpha = .01$ that this diet plan is effective to help athletes to gain weight.
 Answer:

 \begin{align*}
 H_0 &: \mu_d \geq 0 \\
 H_1 &: \mu_d < 0, \text{ LTT, Claim}
 \end{align*}

 Answer: C.V. = -2.821, C.T.S. = -1.703, and P−value = .061

6. Conclusion: C.T.S. is in NCR. P−Value > α. H_0 is valid. H_1 is invalid. Reject the claim.

7. Suggest a couple of values for α that reverses the conclusion.
 Answer: Pick any value such that P−value $\leq \alpha$ such as $\alpha = 0.08$, or $\alpha = 0.1$.