Correlation, Regression & TI

Tips & Notations:

1. Working with a set of ordered–pairs.

2. Do the following only once: 2nd [0], scroll down to DiagnosticOn, followed by pressing ENTER twice.

3. Preparation:
 (a) Enter x values in list L_1.
 (b) Enter corresponding y values in list L_2.

Finding

- Equation of the regression line $y = a + bx$
- Correlation coefficient r
- Coefficient of determination r^2

1. Without menu: STAT > CALC > 8:LinReg(a+bx) > L_1, L_2 > ENTER

2. With menu: STAT > CALC > 8:LinReg(a+bx)
 - Xlist: L_1
 - Ylist: L_2
 - FreqList: blank
 - Store RegEQ: blank
 - Calculate Choose to execute
Testing correlation coefficient \(r \):

\[H_0 : \rho = 0 \Rightarrow \text{Linear Correlation is not significant} \]

\[H_1 : \rho \neq 0 \Rightarrow \text{Linear Correlation is significant} \]

Method I: Using Pearson Correlation Coefficient Method

1. Find PCC–CV Using TI:

 \[
 \text{PRGM} > \text{RVAL} > \text{ENTER (Twice)} > 2: 2 \text{ TAIL TEST},
 \]

 now follow on display instructions.

2. Conclusion:

 - When \(|r| > \text{PCC–CV}\), then Linear Correlation is significant
 - When \(|r| \leq \text{PCC–CV}\), then Linear Correlation is not significant

Method II: Using Traditional or P–Value Method

1. Find C.T.S. and P–Value Using TI:

 \[
 \text{STAT} > \text{TESTS} > \text{LinRegTTest}
 \]

 - Xlist: \(L_1 \)
 - Ylist: \(L_2 \)
 - Freq: 1
 - \(\beta \ & \rho : \neq 0 < 0 > 0 \)
 - RegEQ: blank
 - Calculate Choose to execute

2. Find C.V. Using TI:

 \[
 \text{PRGM} > \text{TVAL}, \text{using 2: 2 TAIL TEST with df} = n - 2
 \]

3. Conclusion: Use testing chart

Predicting \(y \) value for a given \(x \) value:

- Use \(y = a + bx \) when linear correlation is significant
- Use \(\bar{y} \) when linear correlation is not significant