Testing linear correlation coefficient \(r \):

\[H_0 : \rho = 0 \Rightarrow \text{Linear Correlation is not significant} \]

\[H_1 : \rho \neq 0 \Rightarrow \text{Linear Correlation is significant} \]

Where \(\rho \) is the greek letter and it is pronounced \(\text{rho} \).

Using Pearson Correlation Coefficient Critical Value (\(PCC-CV \)) Method

1. Find PCC–CV Using TI:

 \[\text{PRGM} > \text{RVAL} > \text{ENTER (Twice)} > 2: 2 \text{TAIL TEST} \]

 and \[\text{No. PTS = n} \] simply refers to the number of points in the sample.

2. Conclusion:
 - When \(|r| > \text{PCC–CV} \), then Linear Correlation is significant.
 - When \(|r| \leq \text{PCC–CV} \), then Linear Correlation is not significant.

Predicting \(y \) value for a given \(x \) value:

- Use \(y = a + bx \) when linear correlation is significant.

 Plug in the given \(x \) value to find the prediction value \(y \).

- Use \(\bar{y} \) when linear correlation is not significant.