1) Formula: \(\hat{y} = a + bx \), where

Slope:
\[
b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}
\]

\(y \) - intercept:
\[
a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}
\]

2) Linear Correlation Coefficient: \(r \)

1) Measures the strength of a linear relationship
2) \(-1 \leq r \leq 1\)

\[
r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \sqrt{n(\sum y^2) - (\sum y)^2}}
\]

3) Coefficient of Determination: \(r^2 \)

1) Measures the amount of variation in \(y \) that is explained by the linear relationship between \(x \) and \(y \).
2) Write \(r^2 \) as percentage.
4) Standard error of estimate:
 1) Measures the differences between the observed sample \(y \) values and the predicted values \(\hat{y} \) obtained by using the regression equation.
 2) Find the equation of the regression line
 3) Compute \(S_e \):

\[
S_e = \sqrt{\frac{\sum y^2 - a \sum y - b \sum xy}{n-2}}
\]

5) Prediction Interval for an Individual \(y \) when a fixed value \(x_0 \) is given:
 1) Find the equation of the regression line
 2) Compute \(\hat{y} \) for the given fixed value of \(x_0 \).
 3) Compute the standard error of estimate \(S_e \).
 4) Find \(t \)-score with \(n - 2 \) degrees of freedom for the required confidence level.
 5) Compute \(\bar{x} \).
 6) Compute the margin of error \(E \) where

\[
E = t \cdot S_e \cdot \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \bar{x})^2}{n(\sum x^2) - (\sum x)^2}}
\]

Finally, the prediction interval for an individual \(y \) can be found by

\[
\hat{y} - E < y < \hat{y} + E
\]